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Abstract: Based on a small, lightweight, low-cost high performance inertial Measurement Units(IMU), an effec-
tive calibration method is implemented to evaluate the performance of Micro-Electro-Mechanical Systems(MEMS)
sensors suffering from various errors to get acceptable navigation results. A prototype development board based on
FPGA, dual core processor’s configuration for INS/GPS integrated navigation system is designed for experimental
testing. The significant error sources of IMU such as bias, scale factor, and misalignment are estimated in virtue of
static tests, rate tests, and thermal tests. Moreover, an effective intelligent calibration method combining with Kalman
filter is proposed to estimate parameters and reduce the effect of IMU dynamic errors that can degrade the system
performance. The efficiency of proposed approach is demonstrated by various experimental scenarios.
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1. Introduction

In recent years, a promising technology, micro-elec-
tro-mechanical systems (MEMS)-based inertial sen-
sors, has been developed which can provide a low-cost
navigation solution. MEMS systems are commonly
fabricated using silicon, which possesses significant
electrical and mechanical advantages over other ma-
terials [1, 2]. With the rapid growth in demand, such
as in applications of general aviation, unmanned au-
tomotive vehicle, personnel localization, mobile map-
ping systems, athletic training monitoring and com-
puter games, etc [2, 3].

In addition to advances in MEMS fabrication tech-
niques, one of the primary drivers behind the phe-
nomenon of high performance MEMS inertial sensors
is the skill and ability of the MEMS integrator to pack-
age these devices into an Inertial Measurement Unit
(IMU) [4]. Today’s MEMS sensors are still much
less precise than expensive accurate inertial sensors,

such as tactic or navigation grade IMU whose mea-
surements are able to be directly used by inertial sys-
tem self-alignment and strapdown inertial navigation
algorithm. In principle, an IMU consists of Tri-axis
MEMS gyroscopes and accelerometers which mea-
sure angular velocities and accelerations in three di-
mensions. However, if applied by modern MEMS
sensors, these standard inertial calculation procedures
are not practical, or in other words, the solutions di-
verge quickly. The large MEMS noises cause the stand-
alone use of MEMS sensors in strapdown inertial nav-
igation system (INS) to deliver kilometer level posi-
tioning errors for the applications of several seconds
duration [3]. Therefore, there is a critical issue which
focuses on finding the solution to improve the perfor-
mance of IMU based MEMS sensors.

IMU errors include misalignment errors, biases, and
scale factor errors, etc [5]. Low cost sensors, such as
MEMS sensors, are quite large, and their repeatability
is typically poor because of environment factors, espe-
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cially temperature, which makes frequent calibration
a necessity. Different calibration techniques devel-
oped by many authors differ mainly in the proposed
sensor output model, the used instrumentation, and
the thermal compensation.

Bekkeng [5] carried out a calibration analysis of gy-
roscopes. Gyro parameters had been estimated through
kalman filter. Aggarwal [6] proposed a standard test-
ing/calibration procedure for MEMS inertial sensors
and a linear thermal model is developed to compen-
sate for the effects of errors due to the temperature
variation. Fang [8] analyzed the dynamic thermal er-
ror induced by accelerations of MEMS gyroscope. Ot-
her researchers [10, 11] proposed the linear interpola-
tion, 3rd order polynomial, generic hysteresis model,
and characteristic thermal error compensation meth-
ods.

Most previous works only focus on thermal com-
pensation of IMU in reference to static environment.
Sometimes the compensation is indispensable in ap-
plications where there are no static periods. There-
fore, the variation of real-time biases, scale factors
in low cost MEMS sensors should be taken into ac-
count in the integration of dynamic rate and temper-
ature variation simultaneously. Moreover, there is a
need for compensating dynamic noise in addition to
the static noise considering the effect of temperature
variation in low cost MEMS IMU.

This paper focuses on the analysis and compensa-
tion of low cost and accuracy IMU error induced by
dynamic environmental variation of temperature and
rate. Due to the variation of IMU errors irregularly
present in dynamic environment, such as dynamic bias
with time, scale factor, the conventional compensation
approaches are not effective to improve the compen-
sation accuracy of low cost MEMS IMU. An intelli-
gent calibration approach based on combination with
fuzzy control, artificial neural net work with a Kalman
filter is proposed. Taking advantage of the integrated
compensation method, the thermal error in static test
is compensated by measuring the temperature. On the
other hand, the random error, time-varying bias in rate
test is estimated by Kalman filter on line. The accu-
racy of inertial sensors can significantly be improved
by performing precision calibration of each sensor. In
this way, the performance of calibrated MEMS IMU is
improved and can be used for stabilization, guidance
and inertial navigation.

The paper is organized as following: a standard cal-
ibration and testing method is developed to determine
errors. Furthermore, according to the MEMS IMU

and INS/GPS technology, a prototype based on FPGA
development board, dual core processor’s prototype
of integrated system is developed and researched for
conventional navigation. The platform integrating ME-
MS IMU/GPS/INS provides superior performance than
any of the methods operating alone. The System-On-
chip Circuitry (SOPC) implementation was developed
with VHDL language into an FPGA, so as to be easy
to evaluate the customized IMU error compensation
and implement the navigation algorithm.

The proposed intelligent calibration method uses mea-
surement results to estimate parameters and eliminate
the effect of IMU errors in various temperatures and
rates. The temperature compensation is performed to
remove the thermal sensitivity of the MEMS IMU.
Experimental results are afforded and evaluated.

2. Calibration method and validation

2.1 Inertial sensor error model
Traditionally, the inertial sensor errors can be di-

vided into two parts, deterministic (systematic) errors
and random errors [6, 7]. The random errors include
bias-drifts or scale factor drifts. These errors change
with time and dynamic rates. These random errors
have to be modeled stochastically. The deterministic
error sources include bias, non-orthogonality or mis-
alignment errors and scale factor errors which can be
removed by specific calibration procedures in a labo-
ratory environment. It is demonstrated that the deter-
ministic error is temperature dependent [8].

An inertial sensor error model is developed in this
section. It is a unified model because it applies to the
both accelerometers and rate gyros. A general model
for the error of a single inertial sensor is as follows:

sm = K · st +b(t) (1)

where sm is the measured quantity at the sensor out-
put and st is the true value of the quantity that sensor
measures. The term K represents scale factor and b(t)
is the output bias.

The total output bias b(t) is the residual output when
no input is applied. Thus, it can be measured when the
sensor is static. The total bias represents an additive
error and consists of several components in (2),

b(t) = b0 +br(t)+bw(t) (2)

where b0 is a constant null-shift, br(t) is a slow time
varying component called the bias drift, and bw(t) is
the random component known as noise. It is straight
forward to determine numerical values for the error
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terms b0 and bw(t) . The noise bw(t) can be modeled
as a band-limited white noise. A numerical value for
bw(t) can be determined by computing the standard
deviation of the sensor’s output over a short period
of time when no input is applied. The time varying
component of the output error, br(t) , is character-
ized by a stochastic time series. Characterizing this
slowly varying process by a single number would be
overly conservative in the short term and would not
adequately model the longer term error variation [7].

This suggests modeling the time varying bias com-
ponent will be modeled as a first order Gauss-Markov
process. This process can be described by a first order
differential equation.

br =−1
τ

br +bg (3)

Where τ is the correlation time constant and bg is a
Gaussian white process with variance E[br

2(t)] = σr
2

and time constant τ have the following properties, Ex-
ponential autocorrelation

Rx(τ) = σr
2e−

t
τ (4)

In lab, we developed a MEMS IMU which consists
of three ADXR150 gyros and three ADXL210 accelerom-
eters. The constructed MEMS IMU, the unit dimen-
sions are (3.3×3.3×4)cm in Figure 1.

Figure 1 Photograph of MEMS IMU and FPGA prototype

The Allan variance method [9] can be used to de-
termine br(t) in (2). By constructing the Allan vari-
ance plot, the slow varying process corrupting a sen-
sor output can be characterized. For stochastic inertial
error, the Allan variance log-log plots for gyro and ac-
celerometer are shown in Figure 2 and Figure 3.

Figure 2 shows the Allan variance plot constructed
for the device ADXR150 gyro output. The analyzed

data set consists of gyro measurement at a sampling
frequency of 400 Hz. The Allan variance has an ap-
proximate slope of -1/2 for the first 35 seconds. This
indicates that the angular random walk(ARW) is the
dominant noise term. After 35 seconds, the Allan vari-
ance has a slope of +1/2 which implies that the veloc-
ity random walk (VRW) is the dominant noise term.

Figure 2 AV result for the device ADXR150 gyro

Figure 3 AV result for the device ADXL210 accelerometer

The VRW and ARW values are calculated. These
parameters are required for design the process noise
matrix Q to be used in Kalman Filter algorithm in the
integrated navigation systems. The same analysis pro-
cess in Allan variance plot is constructed for the de-
vice ADXL210 accelerometer output.

2.2 MEMS gyro and accelerometer model in lab
Gyroscopes fabricated by micro electromechanical

system (MEMS) technology offer revolutionary im-
provements in cost, size, and ruggedness relative to
fiber-optic and spinning mass technologies. The gyro
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model is used for calibration process in MEMS IMU
in lab. It is a little different with the unified inertial
sensor error model in Equation (1).

Three orthogonally mounted ADXR150 rate-gyros
in order to measure angular rates around the sensi-
tivity axes. Practically, the sensors are not precisely
mounted orthogonally due to imperfections during the
IMU construction process. Therefore, there will be
a small angular position differences between inertial
sensors sensitivity axes and the IMU frame or plat-
form in which inertial sensors are mounted, which is
called misalignment errors or non-orthogonalities as
shown in Figure 4.

Figure 4 IMU platform coordinate axes, inertial sensor sen-
sitivity axes

The stabilized platform (xtytzt) coordinates can be
defined to be the orthogonalized sensor input axis co-
ordinates. The coordinate frame (xmymzm) represents
the non-orthogonalized frame of actual sensitive axes
of MEMS IMU. The offset θ implies the transforma-
tion from the non-orthogonal sensor input axis cluster
to the platform orthogonal coordinates with the same
origin. θi j(i, j = x,y,z) is the rotation of i-th sensor
sensitivity axis around j-th platform sensitivity axis.
In matrix form the output of a triad of gyro sensors
can be represented as follows:




ωmx
ωmy
ωmz


 =




bx
by
bz


+




dxx dxy dxz
dyx dyy dyz
dzx dzy dzz


 ·




fmx
fmy
fmz




+




Kωx 0 0
0 Kωy dyz
0 0 Kωz


 ·




CxzCxy SxzCxy Sxy
Syz CyxCyz SyxCyz

SzyCzx Szx CzyCzx


 ·




ωtx
ωty
ωtz




(5)

where ωm j( j = x,y,z) is gyro sensor measurement;
ωt j( j = x,y,z) is the true value of the quantity that
gyro sensor measures; b j( j = x,y,z) is the bias output
of gyro; di j(i, j = x,y,z) is the gyro drift parameters

depending on acceleration; and Kω j( j = x,y,z)is the
scale factor. The terms cosθ = C,sinθ = S are sub-
stituted in formula (5), which represents the misalign-
ment errors.

The approximate derivation process is used in MEMS
accelerometer model. In matrix form the output of a
triad of accelerometer sensors can be represented as




ωmx
ωmy
ωmz


 =




Kax 0 0
0 Kay 0
0 0 Kaz


 ·




CxzCxy SxzCxy Sxy
Syz CyxCyz SyxCyz

SzyCzx Szx CzyCzx




·



ftx
fty
ftz


+




bax
bay
baz




(6)

where fm j( j = x,y,z) is accelerometer sensor mea-
surement; ft j( j = x,y,z) is the true value of the quan-
tity that accelerometer sensor measures; ba j( j = x,y,z)
is the bias output of accelerometer; Ka j( j = x,y,z)
is the scale factor. In accelerometer model, the ac-
celerometer drift parameters depending on rotation are
not considered in most cases.

2.3 IMU calibration testing method
The calibration of IMU is required to reduce the er-

rors in the INS derived position, velocity and attitude
of moving platforms. To get rid of the inertial error as
much as possible, the modified methods used for cal-
ibrating IMU were primarily designed for static and
rate tests. The improved calibration method combin-
ing with a static test, the dynamic rate test and thermal
testing is implemented.

The standard six-position test method [6] requires
the inertial system to be mounted on a fixed surface
with each sensitivity axis pointing alternately up and
down. In our tests, besides the above experiments,
additional four positions are considered. Especially,
the IMU is mounted on inclined plane in precise fixed
angle in static test in Figure 5. It is called ten-position
static method.

Figure 5 The constructed MEMS IMU in inclined plane

In order to find the scale factor and the bias at least
two pairs of points of the calibration procedure are
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needed. Accelerometers are sensitive to gravity ac-
celeration, so when each one of its sensitivity axes is
placed parallel to gravity in both positive and nega-
tive senses, the measured accelerations will be 1g and
-1g respectively. Therefore, two pairs of points are
obtained for each axis just by placing the IMU on a
fix surface leaning on the two perpendicular sides to
the gravity axis, i.e, a 180◦ rotation is done along the
three accelerometer axes.

In the lab, the adopted ten-position static test com-
prises following steps. The sensitivity axes of IMU(x,
y,z) is placed in the upward-vertical direction of the
local level frame alternately. Later these sensitivity
axes of IMU are rotated 180◦ around upward-vertical
axis of the local level frame alternately. Through the
above procedures, six static positions are located for
IMU. Furthermore, among sensitivity axes of IMU,
any axis is placed in the downward-vertical direction
of the local level frame and it is rotated 180◦ around
downward-vertical axis of the local level frame to cho-
ose two static positions. The two different sensitivity
axes of IMU are placed with 30◦ inclined angle for
the last two positions. There are ten position of IMU
altogether.

By placing the IMU in reference to standard up-
down four position method, the accelerometers mea-
surement fm will be




+g
0
0


 ,




0
+g
0


 ,




0
0

+g


 ,




0
0
−g


 (7)

In order to estimate the bias, scale factor, non-ortho-
gonalities parameters in gyro error model, not only
static position test, but also rate test for gyro is indis-
pensable. Rate tests are typically done using a pre-
cision single-axis rate table. The rate test for MEMS
IMU is shown in Figure. 6.

In static test, the true value of quantity ωt j( j = x,y,z)
for gyro is determined as follows:




ωtx

ωty

ωtz


 =




ωiε cosϕ sinψn

ωiε cosϕ cosψn

ωiε sinϕ


 (8)

where the term ϕ is the local latitude; the term ψn
is the angle between y-axis of IMU and north direc-
tion in inertial navigation coordinate system. The bi-
ases of the gyroscope can be estimated using the same
principle as the elimination method of symmetrically
aligned position. For example, if the y axes of IMU
are rotated 180◦ around upward axis of the local level
frame, the value of ψn would be changed. The corre-
sponding relationship would be obtained as follows:

sin(ψn +180)=−sin(ψn),cos(ψn +180)=−cos(ψn) (9)

Figure 6 Rate rest for MEMS IMU

In rate test, the true value of quantity ωt j( j = x,y,z)
for gyro is as follows:




ωtx
ωty
ωtz


 =




ωiε cosϕ sin(ψn +ωrx · t)
ωiε cosϕ cos(ψn +ωry · t)

ωiε sinϕ


+




ωrx
ωry
ωrz


 (10)

where ωr j( j = x,y,z) is the defined rotating rate of
rate platform. The t is running time of rate table. The
IMU is mounted on a rate table of single. Each sensi-
tivity axis of IMU is placed in direction rotating axis
of rate table alternately. The term will be




+ψ j
0
0


 ,




0
+ψ j

0


 ,




0
0

+ψ j


 ,




−ψ j
0
0


 ,




0
−ψ j

0


 ,




0
0

−ψ j


 (11)

where, ψ j is the numerical value of at the jth rotating
rate. The positive and negative rate tests are accom-
plished through an amount of different defined angle
rates in both the clockwise and counter clockwise di-
rections. According to the test data, the scale factor
and non-orthogonality parameters are decoupled and
estimated through combination the static and rate test
calibration method. The estimation techniques of least
squares and cyclic iteration are developed to solve the
coupling of scale factor and non-orthogonality in Equa-
tion (5). Simultaneity, combining the rate test with
static test, the adverse infection of the earth rotation
rate could be eliminated in solving the equation, con-
sidering the reason that low grade MEMS sensors suf-
fering from bias instability, which can completely mask
the earth’s reference signal. Table 1 lists the main cal-
ibration results in Gyro ADXR150.

Table 1 Gyroscope deterministic errors for ADXR150
Axis Gyro Deterministic error in indoor Temperature

Biases (◦/s) Scale factor
Gyro x 19.81 0.988
Gyro y 15.469 1.019
Gyro z 13.7 1.027
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Figure 7 The circuit of FPGA Navigation computer (9×
6×2cm)

2.4 FPGA based navigation prototype
The testing platform of IMU is a prototype GPS/INS

integrated navigation system, built on an Altera’s FPGA
development board. The prototype aims at a low-cost,
small-size, and portable navigation system for guid-
ance application. The integrated navigation system
based on FPGA is shown in Figure 7.

The hardware’s core of FPGA board is dual NIOSII
system, which consists of two NIOSII processors. A-
mong the two processors, the main processor is re-
sponsible for customized navigation program design
and calculation task, and the coprocessor guarantees
the communication ability of I/O processor and MEMS
IMU/GPS, calibration module, etc. The System-on-
chip circuitry (SOPC) implementation was developed
with VHDL language into an FPGA, so as to be easy
to compensate the MEMS IMU error and implement
the navigation algorithm. Calibration testing experi-
ments are implemented to improve the performance
of prototype integrated system based on FPGA. Not
only data processing in system, but also real-time of
communication are realized.

Some experiments are implemented to test the per-
formance of prototype GPS/INS integrated system ba-
sed on FPGA. The processor read the data of signal of
inertial sensor at 10ms sampling time. It costs 10∼15ms
to accomplish the computation of INS navigation. The
corresponding parameters could be transferred to PC
terminal or other utilities in 10ms.

3. Intelligent calibration method combining
Kalman filter

3.1 Intelligent thermal calibration method
Bias drift is probably the most crucial of the inertial

errors. In inertial sensors even in the absence of any
input (acceleration or angular velocity) the output is
non-zero. This offset, which is usually referred to as
bias, is added to the actual measured signal. This ini-

Figure 8 Thermal testing for MEMS IMU

tial deterministic IMU error calibration does not guar-
antee proper measuring during all the time the MEMS
IMU is activated since start-up. Unluckily MEMS
IMU has a strong temperature dynamic bias, which
means the bias will vary when temperature changes.
There is a need for the development of accurate, reli-
able and efficient thermal models to decrease the ef-
fect of these temperature variations on IMU errors [6].
To investigate thermal effect of sensors and to evaluate
piecewise local temperature drift compensation mod-
els, thermal testing for IMU is performed in thermal
chamber in static environment. It is shown in Figure
8.

In most cases, the main source of temperature varia-
tion is not ambient temperature but circuit selfheating.
Such biases are separated into two parts. One is stabi-
lized bias with a fixed temperature, the other is a small
time varying bias.

In order to evaluate the stabilized biases and the
scale factor values for the accelerometer and gyro-
scopes, a local linear interpolation was performed [11].
Considering the variation largely of bias in MEMS
IMU in full temperature, this method will be less reli-
able. In allusion to the defect of descension of thermal
compensation method mentioned above, an intelligent
thermal compensation combining the artificial neural
network and fuzzy control(F-NN) is proposed in this
paper. Thermal compensation experiments for stabi-
lized biases are implemented in temperature chamber
in static environment.

By virtue of the measurement data of IMU in full
temperature on line, the characters and variation rules
of stabilized biases in full temperatures is established
through an offline training of feed-forward neural net-
work. After that the adaptive neural network is imple-
mented for online compensation of affection of these
errors. During the process of training and learning, the
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learning rate of Network is regulated by fuzzy logic
rules in order to accelerate the converging process of
learning and improve the ability of adaptation. The
back propagation update rule for the weights with a
momentum term is as follows:

∆wi j(k +1) = η ·G(k) ·ζ +α∆wi j(k) (12)

where η is the learning rate of neural network, α is the
momentum coefficient and G(k) is the negative gradi-
ent, ∆wi j is weights of adjusting, ζ is output of neu-
ron.

The input of NN is the value of temperature of the
thermal chamber, the output of NN is the correspond-
ing variation of stabilized biases in full temperature
testing. The non-linear relation between temperature
and stabilized bias is determined based on NN. More-
over, the learning rate of NN is adjusted in training
process. Define the Standard deviation of NN is E,
and the change of Standard deviation is EC. The in-
put to the fuzzy controller is the Standard deviation E
and the change of Standard deviation EC, which rep-
resents the magnitude of error of desired and actual
output of NN, and its output is the learning rate η .

The following tuning rule is constructed for the learn-
ing rate η . When Standard deviation E and its change
EC vary largely, larger changes of the learning rate
must be considered to fasten the learning speed and
decrease the error of training as much as possible.
Thus η should tend to its maximum value, i.e. 1. On
the other hand, when the Standard deviation E and its
change EC are both small, in this situation the NN sys-
tem is close to a steady state, adjusting of the learning
rate must be scaled down, it should tend to constant
value or small value. According to the above anal-
ysis, a set of fuzzy rules to adjust the learning rate η
can be produced. Meanwhile, the improving measures
such as additive momentum in virtue of determination
of momentum parameter reasonably has been taken,
and better application result is acquired. The NN is
three layers feed-forward network. The number of in-
put of NN is one; the number of hidden layer is 15
nodes and the number of output is also one node. The
times of training are reached to 200. Certainly, the
higher accuracy of training could be attached by in-
creasing the training epoch, but this will cost longer
calculation time. The method proposed in this paper
is implemented to compensate the measured stabilized
biases for Gyro X , Y , Z at different temperatures re-
spectively. The fuzzy control rules make the selection
of networks structure and learning rate η more rea-
sonable. It exhibits a fast tuning process to reduce the

error of NN converging process.
The measurement data are read into a MATLAB

program for preprocessing. Later F-NN calibration
program after training is stored in memory of FPGA
navigation system and applied online in experimental
system. In this way, the real-time of the FPGA navi-
gation system is guaranteed in software.

The calculated values over the temperature range are
changed from -20◦C to 40◦C in steps of 5◦C. Each
fixed temperature point is kept for ten minutes. A
total of 14 different temperatures are considered in
this experiment. The 3rd order polynomial thermal
compensation method [11] and combination of fuzzy
and neural network(F-NN) thermal method proposed
in this paper are both implemented to compensate the
measured biases for Gyro X at different temperatures
respectively. The variations of stabilized biases with
temperature are shown in Figure 9.

Figure 9 Gyroscope biases with temperature

As observed from Figure 9, the biases of gyroscopes
vary significantly with temperature. The maximum
biases can reach 20 deg/s over the entire temperature
range. Hence there is a need for designing an accu-
rate thermal calibration model for low cost MEMS
sensors to compensate accurately for these bias drifts
with temperatures. In Figure 9, the black dash-dotted
line is the measured biases with temperature, which
is sampling data of output of IMU in calibration pro-
cess. The red dash line is the compensation result with
3rd order polynomial thermal compensation method.
The black solid line is the compensation result with F-
NN method. Comparing the three kinds of lines, we
can see that the thermal calibration method in F-NN is
better than thermal method in 3rd order polynomial.

Considering IMU is used for attitude and position
calculation process, the F-NN compensated method
could eliminate the non-zero bias from raw data in
MEMS IMU according to the feedback signals of tem-
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perature sensor. The compensated precision in virtue
of 3rd order polynomial method is within [-6, 6] deg/s.
However, the precision with on the entire temperature
in F-NN thermal method is within [-0.5 0.5] deg/s.
The above analysis indicates an almost perfect com-
pensated result in elimination of more than 90% of
bias.

3.2 Combining with Kalman filter calibration me-
thod

Dynamic Bias drift is a complex phenomenon which
is a combination of time, temperature and acceleration
dependent behaviors. The dominant stabilized bias
values are compensated in F-NN method with differ-
ent temperatures in static test.

A Kalman filter is utilized to estimate the dynamic
bias, random error as unknown rest calibration coeffi-
cients. In order to implement Kalman filter in calibra-
tion procedure, the simplified MEMS sensor Equation
(5) are considered in calibration procedure. In most
cases, the misalignments are assumed small. The sim-
plified formula cosθi j ≈ 1 is applied in (5). The term
λ f i(i = x,y,z) is the 3-D vector of gyro scale factor
errors, δi j(i, j = x,y,z)is the 6-D vector of misalign-
ment error, and δi j ≈ Si j(i, j = x, j,z) is misalignment
angles expressed in radians. Higher order indefinite
small terms, such as λ f ·δ ≈ 0, d ≈ 0 are adopted, in
(5). The misalignment (including cross-coupling) and
scale factor error matrix N is given by

N =




λ f x δxz δxy

δyz λ f y δyx

δzy δzx λ f z


 (13)

Therefore, the misalignment and scale factor matrix
K is given by

K = 1+N =




1+λ f x δxz δxy

δyz 1+λ f y δyx

δzy δzx 1+λ f z


 (14)

Taking MEMS gyro model as example, the mea-
sured angular rate ωm in body frame in (5) is as fol-
lows:

ωm = (I +N) ·ωt +br +β = ωt +∆ ·Γ+br +β (15)

where ωt is true angular rate in body frame, br is the
bias drift of time varying component,β is the gyro bias
which comprises the null shit bias b0 and the random
component bg as the Gaussian White noise in Equa-
tion (3).

∆ ·Γ = N ·ωt (16)

with

Γ =
[

λ f x λ f y λ f z δxz δxy δyz δyx δzy δzx
]T (17)

Γ =




ωtx 0 0 ωty ωtz 0 0 0 0
0 ωty 0 0 0 ωtx ωtz 0 0
0 0 ωtz 0 0 0 0 ωtx ωty


 (18)

In Kalman filter, the 12-element state vector is de-
fined as follows:

X = [Γ ξ ] (19)

where Γ is the misalignment and scale factor error
vector in (17), and ξ is the three-element bias drift
of time varying component br in (15).

ξ = [brx bry brz]
T (20)

The equation of state space process model becomes

Ẋ = AX +W (21)

where

A =
[

0 diag(−1
τ
)3×3

]

12×12
(22)

Reference [12] shows that temperature impact on
scale factor is not important as on zero bias of gy-
roscope. This is a likely model for the misalignment
parameters. Assuming that the scale factors are lit-
tle affected by the expected temperature changes, as
observed by testing, this model should also be suffi-
cient for the scale factor error parameters. The stabi-
lized bias with fixed temperature is compensated by
F-NN algorithm. However, the time-dependent gyro
bias (gyro drift) is estimated in Kalman filter. The es-
timated error would be subtracted from the raw data
of the gyroscope and accelerometer.

The measurement signal Z is defined to be the dif-
ference between the commanded reference rate in rate
table and the measured rate of sensors, as follows:

Zk = ωm−ωt = HkXk +νk (23)

where the 3×12 measurement matrix H is given by

H = [I3×3 ∆]T (24)

The matrix ∆ is given by (18), and ν is the zero-mean
Gaussian white noise vector and null-shift bias com-
pensated in F-NN. The Kalman filter is implemented
in Figure 10.

The Kalman filter equations are used to determine
the estimate X̂ and its covariance. The approximate
method is applied in compensating the accelerometer
in MEMS IMU.
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Figure 10 Kalman filter algorithm

3.3 Experimental result and analysis
Corresponding experiments are implemented in single-

axis rate table with thermal chamber. Concrete testing
is executed as follows. Firstly define the fixed tem-
perature in thermal chamber. Meanwhile, the com-
manded rate in single axis rate table are given from -
150◦/s to 150◦/s in steps of 10◦/s for 30 minutes. Later
the temperature of the thermal chamber is varied to
next defined value. The full temperature is changed
from -20◦C to 40◦C in steps of 5◦C. The same steps
are applied in rate table in reference to different tem-
perature defined values. In this experiment, a total of
13 different temperatures are considered and 31 dif-
ferent rate data are obtained.

The experiment testing results of raw IMU error data,
which comprise bias, misalignment and scale factor
errors are shown in variance rotating rates and tem-
peratures are in Figure 11.

As observed from Figure 11, the raw IMU errors are
measured in dynamic rate test and thermal test simul-
taneously. It is evident to see that the raw errors of
gyroscopes vary significantly with variance tempera-
tures and rotating rates. The maximum error can reach
23 deg/s over the testing range for ADXR150 gyro X
in Figure 11 (a) and 300mg for ADXL210 accelerom-
eter X in Figure 11 (b). Among these errors, the dom-
inant error is the bias drift. Hence there is a need for
implementing an effective compensation method of
MEMS IMU accurately for these bias drifts. The posi-
tion and attitude error in strapdown navigation system
would occur without calibration and compensation of
IMU error.

Considering the variation of IMU error induced by
different dynamic range in rate test and temperature
variation, the input of F-NN is two dimension vectors,
which comprise the value of temperature of the ther-
mal chamber and dynamic range of MEMS gyro or
accelerometer; the output of F-NN is the correspond-
ing IMU bias drift in full temperature testing and dy-
namic test. Similar adjusting principle is utilized in

(a)

(b)

Figure 11 Raw MEMS IMU error in real measurement

F-NN method. Rest small IMU errors are estimated
in Kalman filter. The compensated results using in-
tegrated method combining F-NN and Kalman Filter
are shown in Figure 12.

Comparing the result in Figures 11, 12, we can see
that the IMU error utilizing effective calibration and
integrated compensation approach is eliminated effec-
tively. The compensated error of gyro is within [−0.05
0.05] deg/s in Figure 12 (a). The compensated mean
error of accelerometer is within 10mg deg/s in Figure
12 (b). The experimental results indicate that the pro-
posed integrated compensation method outperforms
the classical method. We guarantee a robust (against
temperature variation and rate) sensor performance.

In the future, the fast and simplified algorithms as
calibration module of IMU would be developed to make
the feasibility further and high efficiency in navigation
system based on FPGA and DSP. Moreover, further
work addresses the testing methodologies that have
been used to effectively evaluate the continually evolv-
ing MEMS based IMU over a variety of environments,
including acceleration, vibration, shock, and tempera-
ture. The effectiveness of the proposed integrated cal-
ibration method is investigated further through a kine-
matic van test using integrated GPS and compensated
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(b)

Figure 12 Compensated MEMS IMU error

low-cost MEMS IMU.

4. Conclusions

This paper has presented a complete calibration pro-
cedure for a low cost MEMS IMU with experimental
results. A static, rate and thermal calibration proce-
dure was performed using the raw output. The intelli-
gent thermal-compensated method was integrated into
a Kalman Filter, which could not only eliminate domi-
nant stabilized bias according to measurement of tem-
perature sensor in static test, but also estimate random
error, dynamic time varying bias, etc in rate test. The
prototype development board based on FPGA, dual-
core processing could satisfy the demands of naviga-
tion calculation in IMU in virtue of experimental test-
ing. It costs 10∼ 15ms to accomplish the computation
of INS navigation. Taking the advantage of proposed
method, the MEMS IMU errors are compensated ef-
fectively. The absolute rate error of the calibrated gyro
in the selected application is within 0.04deg/s in entire
dynamic thermal and rate range, and the absolute error
accelerometer is within 10mg.
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