
Received: July 22, 2020. Revised: August 30, 2020. 63

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

Hybrid Max-Min Genetic Algorithm for Load Balancing and Task Scheduling in

Cloud Environment

Shilpa Kodli1* Sujata Terdal1

1Department of Computer Science and Engineering, PDA College of Engineering, Kalaburagi, Karnataka, India

* Corresponding author’s Email: shilpakodli@gmail.com

Abstract: In recent decades, task scheduling and load balancing in the cloud is a growing research area, due to the

vast amount of data stored in the server highly increases the load. In order to address this concern, Hybrid Max-Min

Genetic Algorithm (HMMGA) is proposed for task scheduling and load balancing in the cloud environment. At first,

the load is evaluated for every Virtual Machine (VM), if the load is high, then HMMGA is used for balancing the load.

HMMGA selects the best VMs to assign the tasks and migrates the over-loaded VMs tasks to the under-loaded VMs.

HMMGA significantly avoids the imbalanced workload performance in the cloud environment. In this research paper,

the proposed HMMGA performance is compared to Max-Min algorithm, Low time complexity and low cost binary

Particle Swarm Optimizer (IBPSO-LBS) and PSO with Technique of Order Preference by Similarity to Ideal Solution

(TOPSIS) algorithm to examine the efficacy of HMMGA. From the experimental simulation, the result shows that

HMMGA averagely delivers 1.63 and 3.88 seconds less make span compared to the Max-Min and TOPSIS-PSO

algorithm for five VMs. In addition, HMMGA averagely enhances 10% to 40% of resource utilization than the Max-

Min and TOPSIS-PSO algorithm. In another experiment, the HMMGA approximately showed 1.7 to 25.99 seconds

less average waiting time compared to the Max-Min and IBPSO-LBS.

Keywords: Cloud computing, Genetic algorithm, Load balancing, Max-Min algorithm, Task scheduling, Virtual

machine.

1. Introduction

In recent decades, cloud computing is a growing

technology which has the ability of sharing cloud host

and access the distributed environment and virtualize

the technologies [1]. The task scheduling and load

balancing are two major challenges issued in cloud

resource management in order to meet the cloud

providers and user’s requirements [2]. Therefore, the

number of tasks is increasing highly by increasing the

number of cloud users, but the VMs remain stagnant.

However, the number of VMs is limited to the

capacity of physical machines, due to the constraint

of energy consumption [3, 4]. The task scheduling

and load balancing are used for distributing the work-

load to multiple nodes for ensuring that no node is

either under-loaded or over-loaded [5-7]. For

achieving good performance in task scheduling and

load balancing, many heuristic and meta-heuristic

methodologies are developed by the researchers such

as bee colony optimization algorithm [8], dragonfly

optimization algorithm [9] and Jaya algorithm [10].

Most of the heuristic algorithms use only the priority

methods such as VM priority, task priority, and

sorting methods for increasing the resource

utilization and minimizing the execution time. Still,

the meta-heuristic and heuristic algorithms have high

time complexity in realistic computational

infrastructures.

To overcome the above mentioned issues, a new

fast meta-heuristic algorithm; Hybrid Max-Min

Genetic Algorithm (HMMGA) is proposed for load

balancing and task scheduling in a cloud environment.

HMMGA focuses on reducing the completion time

between the heterogeneous VMs and complex

scheduling decision. HMMGA defines two

constraints like earliest finish time and optimal

completion time with resource utilization to attain

Received: July 22, 2020. Revised: August 30, 2020. 64

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

effective performance in task scheduling and load

balancing. The contribution of the research paper is

as given below:

• The proposed model Hybrid Max-Min Genetic

Algorithm (HMMGA) meets the requirements

of cloud providers and users simultaneously

with limited computational time.

• The proposed model optimizes based on two

constraints such as earliest finish time and

optimal completion time with respect to

resource utilization for effective performance.

• HMMGA optimally schedules the tasks and

balances the user tasks to different VMs in the

cloud environment with limited cost.

• By using HMMGA, cloud providers reduce the

makespan, wait time, load unbalancing, time

complexity and running time and improves the

resource utilization to increase the number of

user tasks to gain more profit.
A few existing research papers are surveyed in the

Section 2. Section 3 explains about HMMGA with

pseudo code and mathematical expressions. In

Section 4, the performance of the proposed and

existing models is analyzed with performance

measures. Finally, the conclusion is made in Section

5.

2. Literature survey

Chaudhary and Kumar [11] implemented a new

load scheduling algorithm; Hybrid Genetic

Gravitational Search Algorithm (HG-GSA) to

decrease the power of computation cost. The

developed algorithm finds the optimal position of the

particle in the search space that was used to calculate

the force. In load scheduling, the developed

algorithm (HG-GSA) dramatically reduces the total

computation cost and delivers higher user satisfaction.

The experimental outcome shows that the developed

algorithm attained superior performance in load

balancing by means of total cost analysis, normalized

total cost of cloudlets and mean of the normalized

pairwise distance. In the condition of a large number

of VMs and cloudlets, the developed HG-GSA

algorithm minimized the mean of pairwise distance

between the iterations that results in poor

performance.

Kaur and Kaur [12] used Hybrid Heterogeneous

earliest finish time heuristic with Ant colony

optimizer (HHA) and Hybrid Predict earliest finish

time heuristic with ant colony optimizer (HPA) for

load balancing in a cloud environment. The

developed hybrid optimization algorithms utilized

genome, ligo and cybershake workflows for

execution. In this literature work, the performance of

developed algorithm was verified based on cost and

makespan. The developed optimization algorithms

have less ability for executing the direct acyclic graph

file (tasks), while the smaller number of VM is

available for execution. In addition, Kong [13]

developed a fast heuristic load balancing algorithm

on the basis of the zero imbalance method in a cloud

environment. In order to attain effective task

scheduling and load balancing, the developed

algorithm defines two constraints like earliest finish

time and optimal completion time. In this research

study, the developed algorithm performance was

analyzed in light of the degree of imbalance,

scheduling time, resource usage, makespan,

monetary cost and waiting time. In the data-center,

power consumption remains one of the main factors

that have great impact on load balancing, where the

developed work failed to focus.

Mapetu [14] developed IBPSO-LBS algorithm

with minimum cost and time complexity of balancing

and scheduling the tasks. The developed optimization

algorithm significantly reduces the waiting time of a

user request and also helps in achieving better task

scheduling and load balancing in a cloud

environment. In addition, Panwar [15] developed

PSO with TOPSIS method for scheduling the tasks in

a cloud environment. Initially, the TOPSIS

methodology was utilized to obtain the relative tasks

on the basis of scheduling criteria. Then, PSO

algorithm was used to compute the relative closeness

of the given criteria for all the tasks in all VMs. In

this scenario, the performance of load balancing was

influenced by energy consumption and live migration

for satisfying both the cloud providers and users,

which was a major concern in these studies.

Priya [16] developed a novel fuzzy based

resource scheduling algorithm in cloud infrastructure.

The developed multi-dimensional resource

scheduling algorithm and queuing network achieves

better data sharing in a cloud environment with low

computation complexity. In this research study, the

developed algorithm performance was validated by

means of response time, the average success rate and

resource scheduling efficiency. In contrast, the

developed fuzzy based algorithm was not

concentrating on the data privacy, where privacy

preserving was one of the essential factors in data or

information sharing. In addition, some of the major

concerns faced by the researchers in load balancing

and task scheduling are listed as follows.

• For load balancing, most of the prior research

works did not concentrate on the resource ability

and user requirements.

Received: July 22, 2020. Revised: August 30, 2020. 65

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

• Due to the high number of tasks, the existing

techniques faced the challenges like high

makespan and low resource utilization.

To address the above mentioned issues, HMMGA

is proposed to attain better performance in task

scheduling and load balancing in the cloud.

3. Proposed methodology

Due to the increasing of users, cloud computing

meets several issues in resource sharing such as task

scheduling and load balancing. Recently, several

heuristic and meat-heuristic algorithms are developed

by the researchers to achieve better performance,

whereas the time complexity is high in realistic

computational infrastructure that is considered as a

major problem. Thus, hybrid algorithms are

presented to exploit the benefits of each algorithm. In

this study, HMMGA model is used for load balancing

and task scheduling in the cloud. The explanations

about the undertaken algorithms are given as follows.

3.1 Max–Min load balancing algorithm

In this research work, the max-min algorithm is

used for maintaining a VM status table and an

executing task status table inside a load balancer. The

VM status table contains existing tasks in VM, VM

life cycle status, total execution time of task and the

last updated time. In addition, the task status table

contains completion time, task execution time and the

latest updated status. The following steps are to be

followed when the allocation tasks arriving in the

same batch are:

• Choose the task with higher execution time

(Max).

• Evaluate the estimated time of the tasks in

every VM with the help of VM table.

• Choose the VM with lower completion time

(Min).

• Finally, allocate the task to the relevant VM.

In addition, it is compulsory to update the

total number of tasks and the total execution

time of the VM in the VM status table [17].

3.2 Genetic algorithm for task scheduling

Genetic algorithm is a global optimization

technique, which imitates the behavior of natural

genetic evolution process. In addition, genetic

algorithm is a probabilistic optimization technique

that mainly comprises of three processes such as

selection, crossover and mutation [18]. Hence, the

selection process is utilized for obtaining a suitable

solution and the crossover and mutation processes are

utilized for maintaining the population diversity. Step

by step procedure of a genetic algorithm is given

below.

Step 1: Initialize the parameters such as probability

of cross over 𝑃𝑐, probability of mutation 𝑃𝑚, size of

the population 𝑃𝑜𝑝 − 𝑠𝑖𝑧𝑒, and maximum evolution

number 𝐸 − 𝑛𝑢𝑚.

Step 2: Initialize the population in terms of

chromosome to obtain better solutions in the

optimization problem.

Step 3: Estimate the population on the basis of the

objective function of every chromosome and then

evaluate the fitness of every chromosome.

Step 4: Choose the chromosomes on the basis of

fitness of every chromosome by using roulette.

Step 5: Crossover genetic operation is performed on

the basis of 𝑃𝑐.

Step 6: Variation genetic operation is performed on

the basis of 𝑃𝑚.

Step 7: If the evolution number reaches𝐸 − 𝑛𝑢𝑚,

consider it as a best chromosome, otherwise go to

step 3.

In the genetic algorithm, 𝑃𝑚 and 𝑃𝑐 plays an

essential role in identifying the optimal solution. If

the 𝑃𝑐 is high, the search procedure is fast and easy to

generate a new genetic pattern structure. In addition,

if the 𝑃𝑚 is large, the genetic algorithm is equivalent

to pure random search. Therefore, the mathematical

equation of 𝑃𝑐 and 𝑃𝑚 are denoted in the Eq. (1) and

(2).

𝑃𝑐 = {

𝑘1(𝑓𝑚𝑎𝑥−𝑓′)

𝑓𝑚𝑎𝑥−𝑓𝑎𝑣𝑔
𝑓 ′ ≥ 𝑓𝑎𝑣𝑔

𝑘3 𝑓 ′ < 𝑓𝑎𝑣𝑔

} (1)

𝑃𝑚 = {

𝑘2(𝑓𝑚𝑎𝑥−𝑓)

𝑓𝑚𝑎𝑥−𝑓𝑎𝑣𝑔
𝑓 ≥ 𝑓𝑎𝑣𝑔

𝑘4 𝑓 < 𝑓𝑎𝑣𝑔

} (2)

Where, 𝑓 ′ is indicated as fitness function of two

intersected individuals, 𝑓𝑚𝑎𝑥 is represented as

maximum fitness in the population, 𝑓 is denoted as

fitness value of the individuals, 𝑓𝑎𝑣𝑔 is stated as the

average fitness in the population, and 𝑘1,2,3,𝑎𝑛𝑑 4 are

stated as constant values that ranges from (0 to 1).

Therefore, the step by step procedure of HMMGA is

detailed as follows.

3.3 Step by step procedure of HMMGA

Step 1: Initialize the cloudlets and VMs in the cloud

data-center.

Received: July 22, 2020. Revised: August 30, 2020. 66

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

Step 2: Calculate the completion time for every VM

and execution time for every task.

Step 3: Choose the tasks with maximum execution

time and assign it to the VMs with optimal

completion time. Here, the optimal completion time

refers to the expected time taken to complete the task

without overloading the corresponding VM.

Step 4: Initialize the gene population, which should

be equal to the number of tasks.

Step 5: Estimate the load for each task in a VM using

max-min scheduler, as given in Eq. (3).

𝐿𝑜𝑎𝑑 = 𝐴𝑚𝑜𝑢𝑛𝑡𝑜𝑓𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑡𝑎𝑠𝑘/
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑜𝑓𝑉𝑀 (3)

Where, cloudlet length is equal to the number of

instructions and the VM’s processing capacity is the

product of processors. Hence, the processing speed is

in the form of Million Instructions Per Seconds

(MIPS).

Step 6: Perform mutation and crossover between the

genes for comparing their load and transfer the

information about the VM selection in order to

change the VM assignment if the optimal completion

time is obtained.

Step 7: After every iteration, update the status of

genes, tasks and VMs.

Step 8: As a result, best order of task assignment is

obtained with the optimal completion time that

significantly decreases the degree of imbalance.

In addition, the pseudo code of HMMGA is

detailed as follows.

Pseudo code of HMMGA

• Initialize the cloudlets and VMs in the data-

center;

• For all the submitted tasks (𝑡𝑖);

• For all the resources (𝑅) in Meta-Task

(MT);

• Estimate the completion time

(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑖 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑖 + 𝑅𝑖)

• End

• End

• For every task in MT;

• Identify the tasks 𝑡𝑖with maximum execution

time, and assign the resources 𝑅;

• Eliminate the tasks 𝑡𝑖 with high completion

time with respect to VM;

• Then, update the resources 𝑅 from MT;

• Update the completion time of all un-mapped

tasks in MT;

• Repeat, until all the tasks in MT is mapped;

• End

• Initialize generation 0: 𝑘 ∶= 0 ; 𝑃𝑘 →

population of randomly generated

individuals;

• Compute 𝑃𝑘: Evaluate fitness(𝑖);

• For each 𝑖 ∈ 𝑃𝑘;do {

• Create generation 𝑘 + 1:

Copy: Choose (1 − 𝑇𝑖) × 𝑛 members

of𝑃𝑘and insert into𝑃𝑘 + 1;

Crossover: Choose (𝑇𝑖 × 𝑛) members of 𝑃𝑘 ;

pair them; generate off-spring; insert the off-spring

into𝑃𝑘 + 1;

Mutation: Choose µ × 𝑛 members of𝑃𝑘 + 1 ;

invert a randomly-selected bit; 𝑛 → number of

tasks and µ →mutation constant.

• Compute 𝑃𝑘 + 1 : evaluate fitness (𝑖) for

every 𝑖 ∈ 𝑃𝑘;

• Increment: 𝑘 ∶= 𝑘 + 1; }

• While fitness of individual in 𝑃𝑘 is not high;

• For 𝑃𝑘, get the fittest order of genes;

• Perform cloud simulation on the basis of

assigned order of optimal completion time of

VMs;

• Calculate the results finally;

• End

• End

4. Experimental investigation and

discussion

For experimental simulation, cloud-sim Net

beans (8.2 version) software is utilized with the

operating system: windows 10 (64 bit) and

commercial licensed processor Intel(R) Core(TM) i9-

9980XE CPU @ 3.00GHz, 3000 MHz, 18 Core(s),

36 logical processor(s) installed physical memory

(RAM) DDR4 1200MHz 128 GB GPU NVIDIA

RTX 2080 Ti GDDR6 22GB. In this research article,

HMMGA performance is compared with two

existing research studies such as IBPSO-LBS [14],

and TOPSIS–PSO [15] for evaluating the

performance of HMMGA. In this research, HMMGA

performance is analyzed in light of makespan,

transmission time, resource utilization, average

waiting time, and degree of imbalance. The

mathematical expressions about the undertaken

performance measures are listed below.

Received: July 22, 2020. Revised: August 30, 2020. 67

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

Degree of imbalance: It measures the load

distribution among the VMs, where the lower value

of degree of imbalance denotes that the load is

effectively balanced. Mathematically, it is stated in

the Eq. (4).

𝐷𝑒𝑔𝑟𝑒𝑒𝑜𝑓𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
 (4)

Where, 𝑇𝑎𝑣𝑔 is indicated as average total

execution time, 𝑇𝑚𝑎𝑥 is stated as maximum

execution time, and 𝑇𝑚𝑖𝑛 is denoted as minimum

execution time.

Makespan: It is defined as the overall

completion time, which is required to execute all the

tasks. The lower makespan delivers efficient and

good task planning to the resources. Hence, the

makespan is mathematically represented in Eq. (5).

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
1≤𝑖≤𝑚

{𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑖} (5)

Where, 𝑚 is represented as the number of VMs.

Resource utilization: It is applied for measuring

the utilization of resources. The cloud provider earns

maximum profit with higher resource utilization rate.

The resource utilization is defined in the Eq. (6).

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑖

𝑚
𝑖=1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛×𝑚
 (6)

Transmission time: The time consumed to

transfer the task on a specific VM is represented as

transmission time that is mathematically estimated by

utilizing the Eq. (7).

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡𝑖𝑚𝑒 =
𝑆𝑖𝑧𝑒𝑜𝑓𝑡ℎ𝑒𝑡𝑎𝑠𝑘

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑜𝑓𝑡ℎ𝑒𝑉𝑀𝑠
 (7)

4.1 Experiment-1

In the Tables 1, 2 and 3, the performance of the

HMMGA is compared with max-min algorithm and

TOPSIS-PSO [15] by means of resource utilization,

makespan and transmission time. The parameter

setting of this experiment is defined as follows; Task

description: number of tasks is 10-40, length is 100-

2500 and MIPS is 300-4000. Host description:

utilization model is full utilization, bandwidth ranges

from 500-2024 and the number of processing

elements are five. Graphically, the performance

analysis of the proposed and existing models with

VMs 5 are indicated in the Figs. 1 and 2.

The main aim of this research work is to

maximize the resource utilization and to minimize the

transmission time and makespan. The resource

utilization, the transmission time and makespan are

individually observed with different number of tasks

(10 to 40) which having 5, 6 and 10 numbers of VMs,

respectively. The makespan, resource utilization and

transmission time is calculated by using the Eqs. (5)

- (7). Tables 1, 2 and 3 denote the estimated values of

makespan, resource utilization and transmission time

for 5, 6 and 10 VMs. By inspecting the Tables 1, 2

and 3, HMMGA averagely delivers 1.63 and 3.88

seconds less makespan than the Max-Min algorithm

and TOPSIS-PSO [15] for five VMs. Likewise,

HMMGA improved resource utilization up to 40%

related to the existing models; Max-Min, and

TOPSIS PSO [15]. Similarly, HMMGA delivers 1.61

and 3.84 seconds less makespan for ten VMs.

Additionally, HMMGA achieves good performance

in load balancing and task scheduling by means of

transmission time. Graphically, the performance

analysis of the proposed and existing models with

VMs 6 and 10 is indicated in the Figs. 3, 4 and 5.

Figure. 1 Graphical evaluation of the proposed and

existing models with VMs 5 in terms of resource

utilization

Figure. 2 Graphical evaluation of the proposed and

existing models with VMs 5 in terms of makespan and

transmission time

Received: July 22, 2020. Revised: August 30, 2020. 68

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

Table 1. Performance analysis of the proposed and existing models with VMs 5

Number of VMs is 5

Number

of Tasks

Resource utilization

(%)

Makespan (seconds) Transmission time (seconds)

Max-

Min

HMMGA Max-

Min

TOPSIS-

PSO [15]

HMMGA Max-Min TOPSIS-

PSO [15]

HMMGA

10 80 92 1.48 1.490 1.37 0.7 0.664 0.65

20 82 93 2.78 3.710 2.63 1.0 1.104 1.0

30 86 95 5.79 6.680 5.47 1.12 1.524 1.10

40 87 97 9.73 10.15 8.68 2.0 2.0 1.98

Figure. 3 Graphical evaluation of the proposed and

existing models with VMs 6 in terms of resource

utilization

Table 2. Performance analysis of the proposed and

existing models with VMs 6

Number of VMs is 6

Number

of

Tasks

Resource utilization (%)

Max-

Min

TOPSIS-

PSO [15]

HMMGA

10 81 56 93

20 83 63 95

30 87 67 96

40 87 74 98

Table 3. Performance analysis of the proposed and existing models with VMs 10

Number

of

Tasks

Resource utilization (%) Makespan (seconds) Transmission time

(seconds)

Max-

Min

HMMGA Max-

Min

TOPSIS-

PSO [15]

HMMGA Max-

Min

HMMGA

10 81 93 0.61 0.77 0.53 0.8 0.71

20 83 95 1.23 1.84 0.98 1.23 1.18

30 87 96 2.38 3.46 2.08 1.58 1.47

40 87 98 4.76 5.13 3.78 2.16 2.05

Figure.4 Graphical evaluation of the proposed and

existing models with VMs 10 in terms of resource

utilization

Figure.5 Graphical evaluation of the proposed and

existing models with VMs 10 in terms of makespan and

transmission time

Received: July 22, 2020. Revised: August 30, 2020. 69

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

Table 4. Performance analysis of the proposed and

existing models with VMs 150 in light of average waiting

time

Number of VMs is 150

Number

of Tasks

Average waiting time (seconds)

Max-Min IBPSO-LBS

[14]

HMMGA

2000 7.73 28.9 6.03

3500 21.38 44.87 18.88

5000 43.99 59.89 38.23

6500 69.56 76.32 56.39

8000 108.92 91.39 88.18

Figure.6 Graphical evaluation of the proposed and

existing models with VMs 150 in terms of average

waiting time

Table 5. Performance analysis of the proposed and existing models with VMs 150 in light of degree of imbalance and

makespan

Number of

Tasks

Degree of Imbalance Makespan (seconds)

Max-Min IBPSO-LBS

[14]

HMMGA Max-Min IBPSO-LBS

[14]

HMMGA

2000 0.72 0.26 0.67 20.00 100 18.44

3500 0.45 0.189 0.41 28.91 132 23.18

5000 0.31 0.1872 0.28 43.77 167 35.09

6500 0.26 0.185 0.23 55.66 200 49.16

8000 0.24 0.1825 0.16 63.83 237 56.79

4.2 Experiment-2

In Tables 4 and 5, the performance of HMMGA

is analyzed in terms of average waiting time,

makespan and degree of imbalance. Here, the number

of tasks ranges from 2000 to 8000 for 150 VMs. By

inspecting table 4, the proposed model; HMMGA

achieved better performance than the conventional

Max-Min and IBPSO-LBS [14] algorithms in light of

average waiting time. The parameter setting of this

experiment is given as follows; Datacenter: host

bandwidth (Mbps) is 100,000 host storage (MB) is

10,000,000 the number of hosts is 3-15, policy type

is time shared, and number of datacenter is one.

Independent tasks: length of task is 100,000-600,000

and total number of tasks is 2000-8000. VM: number

of VMs is 150, number of processing elements per

VM are 5 and the policy type is space shared. By

investigating Table 4 and Fig. 6 it is clear that

HMMGA showed significant performance in task

scheduling and load balancing by minimizing

Average waiting time related to the comparative

algorithms.

In Table 5, the degree of imbalance, and

makespan is observed individually with a dissimilar

number of tasks (2000-8000) which has 150 numbers

of VMs. By observing Table 5, HMMGA

significantly diminishes the makespan as the number

of VM increases due to the increasing of processing

power for executing the assigned tasks. From the

analysis, HMMGA out-performs the existing

techniques; Max-Min algorithm, and IBPSO-LBS

[14] with minimum makespan time. In addition,

HMMGA minimizes the degree of imbalance than

the comparative techniques. It means that HMMGA

delivers high load balancing level.

4.3 Discussion

As discussed in the experimental section,

HMMGA is proposed in this paper for load balancing

and task scheduling in the cloud environment. In

most of the existing works, max-min algorithm is

used only for balancing the load in a cloud

environment, whereas the combination of max-min

and a genetic algorithm is adaptable for multi-

objectives such as minimization of transmission time,

average waiting time and makespan by considering

the factors like load, task length and VM resources.

The effect of HMMGA is indicated in Tables 1 to 5

and the performance analysis is verified using the

performance metrics like makespan, transmission

time, resource utilization, average waiting time, and

degree of imbalance. Under such condition,

HMMGA averagely enhanced 10% to 40% of

resource utilization related to the existing models;

Max-Min, TOPSIS-PSO algorithms. In this research

work, HMMGA achieves better performance in load

balancing and task scheduling compared to Max-Min,

TOPSIS-PSO and IBPSO-LBS algorithms in light of

Received: July 22, 2020. Revised: August 30, 2020. 70

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

makespan, transmission time, resource utilization,

average waiting time, and degree of imbalance

through multi-objective optimization of completion

time through factors like load and VM resources.

5. Conclusion

In this research paper, several research gaps in the

prior literature for load balancing and task scheduling

based on heuristic and meta-heuristic algorithms are

presented. HMMGA is implemented on the basis of

hybrid algorithms; Max-Min and genetic algorithm

for balancing the load in the VMs and to schedule the

task with limited computational complexity. From

the experimental simulation, HMMGA attained

significant performance in task scheduling and load

balancing in the cloud environment in light of

makespan, transmission time, resource utilization,

average waiting time, and degree of imbalance as

compared to Max-Min, TOPSIS-PSO and IBPSO-

LBS algorithms. For instance, HMMGA averagely

delivers 1.63 and 3.88 seconds less makespan related

to the Max-Min algorithm and TOPSIS-PSO

algorithm for five VMs. In addition, HMMGA

enhanced 10% to 40% of resource utilization

compared to the Max-Min, TOPSIS-PSO algorithms.

In another experiment, the HMMGA averagely

showed 1.7 to 25.99 seconds less average waiting

time related to the comparative models; Max-Min

and IBPSO-LBS. In future work, a new improved

optimization technique can be proposed for load

balancing and task scheduling in the cloud

environment.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The paper conceptualization, methodology,

software, validation, formal analysis, investigation,

resources, data curation, writing—original draft

preparation, writing—review and editing,

visualization, have been done by 1st author. The

supervision and project administration, have been

done by 2nd author.

References

[1] L. Tang, Z. Li, P. Ren, J. Pan, Z. Lu, J. Su, and

Z. Meng, “Online and offline based load balance

algorithm in cloud computing”, Knowledge-

Based Systems, Vol. 138, pp. 91-104, 2017.

[2] N. Leontiou, D. Dechouniotis, S. Denazis, and S.

Papavassiliou, “A hierarchical control

framework of load balancing and resource

allocation of cloud computing

services”, Computers & Electrical

Engineering, Vol. 67, pp. 235-251, 2018.

[3] D. B. LD and P. V. Krishna, “Honey bee

behavior inspired load balancing of tasks in

cloud computing environments”, Applied Soft

Computing, Vol. 13, No. 5, pp. 2292-2303, 2013.

[4] M. Adhikari, S. Nandy, and T. Amgoth, “Meta

heuristic-based task deployment mechanism for

load balancing in IaaS cloud”, Journal of

Network and Computer Applications, Vol. 128,

pp. 64-77, 2019.

[5] S. L. Chen, Y. Y. Chen, and S. H. Kuo, “CLB:

A novel load balancing architecture and

algorithm for cloud services”, Computers &

Electrical Engineering, Vol. 58, pp. 154-160,

2017.

[6] X. Shao, M. Jibiki, Y. Teranishi, and N.

Nishinaga, “An efficient load-balancing

mechanism for heterogeneous range-queriable

cloud storage”, Future Generation Computer

Systems, Vol. 78, pp. 920-930, 2018.

[7] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya,

“Vertical and horizontal elasticity for dynamic

virtual machine reconfiguration”, IEEE

Transactions on Services Computing, Vol. 99,

pp. 1-1, 2016.

[8] K. R. Babu and P. Samuel, “Enhanced bee

colony algorithm for efficient load balancing

and scheduling in cloud”, Innovations in Bio-

Inspired Computing and Applications, Springer,

Cham, pp. 67-78, 2016.

[9] V. Polepally and K. S. Chatrapati, “Dragonfly

optimization and constraint measure-based load

balancing in cloud computing”, Cluster

Computing, pp. 1-13, 2017.

[10] S. Mohanty, P. K. Patra, M. Ray, and S.

Mohapatra, “An Approach for Load Balancing

in Cloud Computing Using JAYA Algorithm”,

International Journal of Information

Technology and Web Engineering, Vol. 14, No.1,

pp. 27-41, 2019.

[11] D. Chaudhary, and B. Kumar, “Cost optimized

Hybrid Genetic-Gravitational Search Algorithm

for load scheduling in Cloud Computing”,

Applied Soft Computing, Vol. 83, pp. 105627,

2019.

[12] A. Kaur and B. Kaur, “Load balancing

optimization based on hybrid Heuristic-

Metaheuristic techniques in cloud environment”,

Journal of King Saud University-Computer and

Information Sciences, 2019.

[13] L. Kong, J. P. B. Mapetu, and Z. Chen,

“Heuristic Load Balancing Based Zero

Received: July 22, 2020. Revised: August 30, 2020. 71

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.07

Imbalance Mechanism in Cloud Computing”,

Journal of Grid Computing, pp .1-26, 2019.

[14] J. P. B. Mapetu, Z. Chen, and L. Kong, “Low-

time complexity and low-cost binary particle

swarm optimization algorithm for task

scheduling and load balancing in cloud

computing”, Applied Intelligence, Vol. 49, No. 9,

pp. 3308-3330,2019.

[15] N. Panwar, S. Negi, M. M. S. Rauthan, and K. S.

Vaisla, “TOPSIS–PSO inspired non-preemptive

tasks scheduling algorithm in cloud

environment”, Cluster Computing, Vol. 22, No.

4, pp. 1379-1396, 2019.

[16] V. Priya, C. S. Kumar, and R. Kannan,

“Resource scheduling algorithm with load

balancing for cloud service

provisioning”, Applied Soft Computing, Vol. 76,

pp. 416-424, 2019.

[17] Y. Mao, X. Chen, and X. Li, “Max–min task

scheduling algorithm for load balance in cloud

computing”, In: Proc. of International Conf. on

Computer Science and Information Technology,

Springer, New Delhi, pp. 457-465, 2014.

[18] Y. Zhang, and Y. Zhou, “Distributed

coordination control of traffic network flow

using adaptive genetic algorithm based on cloud

computing”, Journal of Network and Computer

Applications, Vol. 119, pp. 110-120, 2018.

