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Abstract: In recent decades, task scheduling and load balancing in the cloud is a growing research area, due to the 

vast amount of data stored in the server highly increases the load. In order to address this concern, Hybrid Max-Min 

Genetic Algorithm (HMMGA) is proposed for task scheduling and load balancing in the cloud environment. At first, 

the load is evaluated for every Virtual Machine (VM), if the load is high, then HMMGA is used for balancing the load.  

HMMGA selects the best VMs to assign the tasks and migrates the over-loaded VMs tasks to the under-loaded VMs. 

HMMGA significantly avoids the imbalanced workload performance in the cloud environment. In this research paper, 

the proposed HMMGA performance is compared to Max-Min algorithm, Low time complexity and low cost binary 

Particle Swarm Optimizer (IBPSO-LBS) and PSO with Technique of Order Preference by Similarity to Ideal Solution 

(TOPSIS) algorithm to examine the efficacy of HMMGA. From the experimental simulation, the result shows that 

HMMGA averagely delivers 1.63 and 3.88 seconds less make span compared to the Max-Min and TOPSIS-PSO 

algorithm for five VMs. In addition, HMMGA averagely enhances 10% to 40% of resource utilization than the Max-

Min and TOPSIS-PSO algorithm. In another experiment, the HMMGA approximately showed 1.7 to 25.99 seconds 

less average waiting time compared to the Max-Min and IBPSO-LBS. 

Keywords: Cloud computing, Genetic algorithm, Load balancing, Max-Min algorithm, Task scheduling, Virtual 

machine. 

 

 

1. Introduction 

In recent decades, cloud computing is a growing 

technology which has the ability of sharing cloud host 

and access the distributed environment and virtualize 

the technologies [1]. The task scheduling and load 

balancing are two major challenges issued in cloud 

resource management in order to meet the cloud 

providers and user’s requirements [2]. Therefore, the 

number of tasks is increasing highly by increasing the 

number of cloud users, but the VMs remain stagnant. 

However, the number of VMs is limited to the 

capacity of physical machines, due to the constraint 

of energy consumption [3, 4]. The task scheduling 

and load balancing are used for distributing the work-

load to multiple nodes for ensuring that no node is 

either under-loaded or over-loaded [5-7]. For 

achieving good performance in task scheduling and 

load balancing, many heuristic and meta-heuristic 

methodologies are developed by the researchers such 

as bee colony optimization algorithm [8], dragonfly 

optimization algorithm [9] and Jaya algorithm [10]. 

Most of the heuristic algorithms use only the priority 

methods such as VM priority, task priority, and 

sorting methods for increasing the resource 

utilization and minimizing the execution time. Still, 

the meta-heuristic and heuristic algorithms have high 

time complexity in realistic computational 

infrastructures. 

To overcome the above mentioned issues, a new 

fast meta-heuristic algorithm; Hybrid Max-Min 

Genetic Algorithm (HMMGA) is proposed for load 

balancing and task scheduling in a cloud environment. 

HMMGA focuses on reducing the completion time 

between the heterogeneous VMs and complex 

scheduling decision. HMMGA defines two 

constraints like earliest finish time and optimal 

completion time with resource utilization to attain 
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effective performance in task scheduling and load 

balancing. The contribution of the research paper is 

as given below: 

 

• The proposed model Hybrid Max-Min Genetic 

Algorithm (HMMGA) meets the requirements 

of cloud providers and users simultaneously 

with limited computational time. 

• The proposed model optimizes based on two 

constraints such as earliest finish time and 

optimal completion time with respect to 

resource utilization for effective performance. 

• HMMGA optimally schedules the tasks and 

balances the user tasks to different VMs in the 

cloud environment with limited cost. 

• By using HMMGA, cloud providers reduce the 

makespan, wait time, load unbalancing, time 

complexity and running time and improves the 

resource utilization to increase the number of 

user tasks to gain more profit. 
A few existing research papers are surveyed in the 

Section 2. Section 3 explains about HMMGA with 

pseudo code and mathematical expressions. In 

Section 4, the performance of the proposed and 

existing models is analyzed with performance 

measures. Finally, the conclusion is made in Section 

5. 

2. Literature survey 

Chaudhary and Kumar [11] implemented a new 

load scheduling algorithm; Hybrid Genetic 

Gravitational Search Algorithm (HG-GSA) to 

decrease the power of computation cost. The 

developed algorithm finds the optimal position of the 

particle in the search space that was used to calculate 

the force. In load scheduling, the developed 

algorithm (HG-GSA) dramatically reduces the total 

computation cost and delivers higher user satisfaction. 

The experimental outcome shows that the developed 

algorithm attained superior performance in load 

balancing by means of total cost analysis, normalized 

total cost of cloudlets and mean of the normalized 

pairwise distance. In the condition of a large number 

of VMs and cloudlets, the developed HG-GSA 

algorithm minimized the mean of pairwise distance 

between the iterations that results in poor 

performance. 

Kaur and Kaur [12] used Hybrid Heterogeneous 

earliest finish time heuristic with Ant colony 

optimizer (HHA) and Hybrid Predict earliest finish 

time heuristic with ant colony optimizer (HPA) for 

load balancing in a cloud environment. The 

developed hybrid optimization algorithms utilized 

genome, ligo and cybershake workflows for 

execution. In this literature work, the performance of 

developed algorithm was verified based on cost and 

makespan. The developed optimization algorithms 

have less ability for executing the direct acyclic graph 

file (tasks), while the smaller number of VM is 

available for execution. In addition, Kong [13] 

developed a fast heuristic load balancing algorithm 

on the basis of the zero imbalance method in a cloud 

environment. In order to attain effective task 

scheduling and load balancing, the developed 

algorithm defines two constraints like earliest finish 

time and optimal completion time. In this research 

study, the developed algorithm performance was 

analyzed in light of the degree of imbalance, 

scheduling time, resource usage, makespan, 

monetary cost and waiting time. In the data-center, 

power consumption remains one of the main factors 

that have great impact on load balancing, where the 

developed work failed to focus. 

Mapetu [14] developed IBPSO-LBS algorithm 

with minimum cost and time complexity of balancing 

and scheduling the tasks. The developed optimization 

algorithm significantly reduces the waiting time of a 

user request and also helps in achieving better task 

scheduling and load balancing in a cloud 

environment. In addition, Panwar [15] developed 

PSO with TOPSIS method for scheduling the tasks in 

a cloud environment. Initially, the TOPSIS 

methodology was utilized to obtain the relative tasks 

on the basis of scheduling criteria. Then, PSO 

algorithm was used to compute the relative closeness 

of the given criteria for all the tasks in all VMs. In 

this scenario, the performance of load balancing was 

influenced by energy consumption and live migration 

for satisfying both the cloud providers and users, 

which was a major concern in these studies. 

Priya [16] developed a novel fuzzy based 

resource scheduling algorithm in cloud infrastructure. 

The developed multi-dimensional resource 

scheduling algorithm and queuing network achieves 

better data sharing in a cloud environment with low 

computation complexity. In this research study, the 

developed algorithm performance was validated by 

means of response time, the average success rate and 

resource scheduling efficiency. In contrast, the 

developed fuzzy based algorithm was not 

concentrating on the data privacy, where privacy 

preserving was one of the essential factors in data or 

information sharing. In addition, some of the major 

concerns faced by the researchers in load balancing 

and task scheduling are listed as follows. 

 

• For load balancing, most of the prior research 

works did not concentrate on the resource ability 

and user requirements. 
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• Due to the high number of tasks, the existing 

techniques faced the challenges like high 

makespan and low resource utilization.  

 

To address the above mentioned issues, HMMGA 

is proposed to attain better performance in task 

scheduling and load balancing in the cloud. 

3. Proposed methodology 

Due to the increasing of users, cloud computing 

meets several issues in resource sharing such as task 

scheduling and load balancing. Recently, several 

heuristic and meat-heuristic algorithms are developed 

by the researchers to achieve better performance, 

whereas the time complexity is high in realistic 

computational infrastructure that is considered as a 

major problem. Thus, hybrid algorithms are 

presented to exploit the benefits of each algorithm. In 

this study, HMMGA model is used for load balancing 

and task scheduling in the cloud. The explanations 

about the undertaken algorithms are given as follows.  

3.1 Max–Min load balancing algorithm 

In this research work, the max-min algorithm is 

used for maintaining a VM status table and an 

executing task status table inside a load balancer. The 

VM status table contains existing tasks in VM, VM 

life cycle status, total execution time of task and the 

last updated time. In addition, the task status table 

contains completion time, task execution time and the 

latest updated status. The following steps are to be 

followed when the allocation tasks arriving in the 

same batch are: 

 

• Choose the task with higher execution time 

(Max). 

• Evaluate the estimated time of the tasks in 

every VM with the help of VM table. 

• Choose the VM with lower completion time 

(Min). 

• Finally, allocate the task to the relevant VM. 

In addition, it is compulsory to update the 

total number of tasks and the total execution 

time of the VM in the VM status table [17]. 

3.2 Genetic algorithm for task scheduling 

Genetic algorithm is a global optimization 

technique, which imitates the behavior of natural 

genetic evolution process. In addition, genetic 

algorithm is a probabilistic optimization technique 

that mainly comprises of three processes such as 

selection, crossover and mutation [18]. Hence, the 

selection process is utilized for obtaining a suitable 

solution and the crossover and mutation processes are 

utilized for maintaining the population diversity. Step 

by step procedure of a genetic algorithm is given 

below. 

 

Step 1: Initialize the parameters such as probability 

of cross over 𝑃𝑐, probability of mutation 𝑃𝑚, size of 

the population 𝑃𝑜𝑝 − 𝑠𝑖𝑧𝑒, and maximum evolution 

number 𝐸 − 𝑛𝑢𝑚. 

Step 2: Initialize the population in terms of 

chromosome to obtain better solutions in the 

optimization problem.  

Step 3: Estimate the population on the basis of the 

objective function of every chromosome and then 

evaluate the fitness of every chromosome. 

Step 4: Choose the chromosomes on the basis of 

fitness of every chromosome by using roulette. 

Step 5: Crossover genetic operation is performed on 

the basis of 𝑃𝑐. 

Step 6: Variation genetic operation is performed on 

the basis of 𝑃𝑚. 

Step 7: If the evolution number reaches𝐸 − 𝑛𝑢𝑚, 

consider it as a best chromosome, otherwise go to 

step 3. 

In the genetic algorithm, 𝑃𝑚  and 𝑃𝑐  plays an 

essential role in identifying the optimal solution. If 

the 𝑃𝑐 is high, the search procedure is fast and easy to 

generate a new genetic pattern structure. In addition, 

if the 𝑃𝑚 is large, the genetic algorithm is equivalent 

to pure random search. Therefore, the mathematical 

equation of 𝑃𝑐 and 𝑃𝑚 are denoted in the Eq. (1) and 

(2). 

 

𝑃𝑐 = {

𝑘1(𝑓𝑚𝑎𝑥−𝑓′)

𝑓𝑚𝑎𝑥−𝑓𝑎𝑣𝑔
𝑓 ′ ≥ 𝑓𝑎𝑣𝑔

𝑘3 𝑓 ′ < 𝑓𝑎𝑣𝑔

} (1) 

 

𝑃𝑚 = {

𝑘2(𝑓𝑚𝑎𝑥−𝑓)

𝑓𝑚𝑎𝑥−𝑓𝑎𝑣𝑔
𝑓 ≥ 𝑓𝑎𝑣𝑔

𝑘4 𝑓 < 𝑓𝑎𝑣𝑔

} (2) 

 

Where, 𝑓 ′ is indicated as fitness function of two 

intersected individuals, 𝑓𝑚𝑎𝑥  is represented as 

maximum fitness in the population, 𝑓 is denoted as 

fitness value of the individuals, 𝑓𝑎𝑣𝑔 is stated as the 

average fitness in the population, and 𝑘1,2,3,𝑎𝑛𝑑 4 are 

stated as constant values that ranges from (0 to 1). 

Therefore, the step by step procedure of HMMGA is 

detailed as follows. 

3.3 Step by step procedure of HMMGA  

Step 1: Initialize the cloudlets and VMs in the cloud 

data-center.  
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Step 2: Calculate the completion time for every VM 

and execution time for every task. 

Step 3: Choose the tasks with maximum execution 

time and assign it to the VMs with optimal 

completion time. Here, the optimal completion time 

refers to the expected time taken to complete the task 

without overloading the corresponding VM. 

Step 4: Initialize the gene population, which should 

be equal to the number of tasks. 

Step 5: Estimate the load for each task in a VM using 

max-min scheduler, as given in Eq. (3). 

 

𝐿𝑜𝑎𝑑 =  𝐴𝑚𝑜𝑢𝑛𝑡𝑜𝑓𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑡𝑎𝑠𝑘/
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑜𝑓𝑉𝑀                              (3) 

 

Where, cloudlet length is equal to the number of 

instructions and the VM’s processing capacity is the 

product of processors. Hence, the processing speed is 

in the form of Million Instructions Per Seconds 

(MIPS). 

Step 6: Perform mutation and crossover between the 

genes for comparing their load and transfer the 

information about the VM selection in order to 

change the VM assignment if the optimal completion 

time is obtained. 

Step 7: After every iteration, update the status of 

genes, tasks and VMs. 

Step 8: As a result, best order of task assignment is 

obtained with the optimal completion time that 

significantly decreases the degree of imbalance.  

In addition, the pseudo code of HMMGA is 

detailed as follows. 

 

Pseudo code of HMMGA 

• Initialize the cloudlets and VMs in the data-

center; 

• For all the submitted tasks (𝑡𝑖); 

• For all the resources (𝑅)  in Meta-Task 

(MT); 

• Estimate the completion time 

(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑖 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑖 + 𝑅𝑖) 

• End  

• End   

• For every task in MT; 

• Identify the tasks 𝑡𝑖with maximum execution 

time, and assign the resources 𝑅; 

• Eliminate the tasks 𝑡𝑖 with high completion 

time with respect to VM; 

• Then, update the resources 𝑅 from MT; 

• Update the completion time of all un-mapped 

tasks in MT; 

• Repeat, until all the tasks in MT is mapped; 

• End 

• Initialize generation  0: 𝑘 ∶=  0 ; 𝑃𝑘 → 

population of randomly generated 

individuals; 

• Compute 𝑃𝑘: Evaluate fitness(𝑖); 

• For each 𝑖 ∈  𝑃𝑘;do {   

• Create generation 𝑘 +  1:  

Copy: Choose (1 −  𝑇𝑖)  ×  𝑛  members 

of𝑃𝑘and insert into𝑃𝑘 + 1;  

Crossover: Choose (𝑇𝑖 ×  𝑛)  members of 𝑃𝑘 ; 

pair them; generate off-spring; insert the off-spring 

into𝑃𝑘 + 1; 

Mutation: Choose µ ×  𝑛  members of𝑃𝑘 + 1 ; 

invert a randomly-selected bit; 𝑛 →  number of 

tasks and µ →mutation constant. 

• Compute 𝑃𝑘 + 1 : evaluate fitness (𝑖)  for 

every 𝑖 ∈  𝑃𝑘;  

• Increment: 𝑘 ∶=  𝑘 +  1; }  

• While fitness of individual in 𝑃𝑘 is not high;  

• For 𝑃𝑘, get the fittest order of genes;  

• Perform cloud simulation on the basis of 

assigned order of optimal completion time of 

VMs; 

• Calculate the results finally; 

• End 

• End 

4. Experimental investigation and 

discussion 

For experimental simulation, cloud-sim Net 

beans (8.2 version) software is utilized with the 

operating system: windows 10 (64 bit) and 

commercial licensed processor Intel(R) Core(TM) i9-

9980XE CPU @ 3.00GHz, 3000 MHz, 18 Core(s), 

36 logical processor(s) installed physical memory 

(RAM) DDR4 1200MHz 128 GB GPU NVIDIA 

RTX 2080 Ti GDDR6 22GB. In this research article, 

HMMGA performance is compared with two 

existing research studies such as IBPSO-LBS [14], 

and TOPSIS–PSO [15] for evaluating the 

performance of HMMGA. In this research, HMMGA 

performance is analyzed in light of makespan, 

transmission time, resource utilization, average 

waiting time, and degree of imbalance. The 

mathematical expressions about the undertaken 

performance measures are listed below. 
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Degree of imbalance: It measures the load 

distribution among the VMs, where the lower value 

of degree of imbalance denotes that the load is 

effectively balanced. Mathematically, it is stated in 

the Eq. (4). 

 

𝐷𝑒𝑔𝑟𝑒𝑒𝑜𝑓𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
   (4) 

 

Where, 𝑇𝑎𝑣𝑔  is indicated as average total 

execution time, 𝑇𝑚𝑎𝑥  is stated as maximum 

execution time, and 𝑇𝑚𝑖𝑛  is denoted as minimum 

execution time. 

 

Makespan: It is defined as the overall 

completion time, which is required to execute all the 

tasks. The lower makespan delivers efficient and 

good task planning to the resources. Hence, the 

makespan is mathematically represented in Eq. (5). 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
1≤𝑖≤𝑚

{𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑖}   (5) 

 

Where, 𝑚 is represented as the number of VMs. 

 

Resource utilization: It is applied for measuring 

the utilization of resources. The cloud provider earns 

maximum profit with higher resource utilization rate. 

The resource utilization is defined in the Eq. (6). 

 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑖

𝑚
𝑖=1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛×𝑚
  (6) 

 

Transmission time: The time consumed to 

transfer the task on a specific VM is represented as 

transmission time that is mathematically estimated by 

utilizing the Eq. (7).  

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡𝑖𝑚𝑒 =
𝑆𝑖𝑧𝑒𝑜𝑓𝑡ℎ𝑒𝑡𝑎𝑠𝑘

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑜𝑓𝑡ℎ𝑒𝑉𝑀𝑠
   (7) 

4.1 Experiment-1 

In the Tables 1, 2 and 3, the performance of the 

HMMGA is compared with max-min algorithm and 

TOPSIS-PSO [15] by means of resource utilization, 

makespan and transmission time. The parameter 

setting of this experiment is defined as follows; Task 

description: number of tasks is 10-40, length is 100-

2500 and MIPS is 300-4000. Host description: 

utilization model is full utilization, bandwidth ranges 

from 500-2024 and the number of processing 

elements are five. Graphically, the performance 

analysis of the proposed and existing models with 

VMs 5 are indicated in the Figs. 1 and 2. 

The main aim of this research work is to 

maximize the resource utilization and to minimize the 

transmission time and makespan. The resource 

utilization, the transmission time and makespan are 

individually observed with different number of tasks 

(10 to 40) which having 5, 6 and 10 numbers of VMs, 

respectively. The makespan, resource utilization and 

transmission time is calculated by using the Eqs. (5) 

- (7). Tables 1, 2 and 3 denote the estimated values of 

makespan, resource utilization and transmission time 

for 5, 6 and 10 VMs. By inspecting the Tables 1, 2 

and 3, HMMGA averagely delivers 1.63 and 3.88 

seconds less makespan than the Max-Min algorithm 

and TOPSIS-PSO [15] for five VMs. Likewise, 

HMMGA improved resource utilization up to 40% 

related to the existing models; Max-Min, and 

TOPSIS PSO [15]. Similarly, HMMGA delivers 1.61 

and 3.84 seconds less makespan for ten VMs.  

Additionally, HMMGA achieves good performance 

in load balancing and task scheduling by means of 

transmission time. Graphically, the performance 

analysis of the proposed and existing models with 

VMs 6 and 10 is indicated in the Figs. 3, 4 and 5. 

 

 
Figure. 1 Graphical evaluation of the proposed and 

existing models with VMs 5 in terms of resource 

utilization 

 

 
Figure. 2 Graphical evaluation of the proposed and 

existing models with VMs 5 in terms of makespan and 

transmission time 
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Table 1. Performance analysis of the proposed and existing models with VMs 5 

Number of VMs is 5 

Number 

of Tasks 

 

Resource utilization 

(%) 

Makespan (seconds) Transmission time (seconds) 

Max-

Min  

HMMGA Max-

Min 

TOPSIS-

PSO [15] 

HMMGA Max-Min TOPSIS-

PSO [15] 

HMMGA 

10 80 92 1.48 1.490 1.37 0.7 0.664 0.65 

20 82 93 2.78 3.710 2.63 1.0 1.104 1.0 

30 86 95 5.79 6.680 5.47 1.12 1.524 1.10 

40 87 97 9.73 10.15 8.68 2.0 2.0 1.98 

 

 

 
Figure. 3 Graphical evaluation of the proposed and 

existing models with VMs 6 in terms of resource 

utilization 

 

Table 2. Performance analysis of the proposed and 

existing models with VMs 6 

Number of VMs is 6 

Number 

of 

Tasks 

Resource utilization (%) 

Max-

Min  

TOPSIS-

PSO [15] 

HMMGA 

10 81 56 93 

20 83 63 95 

30 87 67 96 

40 87 74 98 

 

 
Table 3. Performance analysis of the proposed and existing models with VMs 10 

Number 

of 

Tasks 

 

Resource utilization (%) Makespan (seconds) Transmission time 

(seconds) 

Max-

Min  

HMMGA Max-

Min 

TOPSIS-

PSO [15] 

HMMGA Max-

Min 

HMMGA 

10 81 93 0.61 0.77 0.53 0.8 0.71 

20 83 95 1.23 1.84 0.98 1.23 1.18 

30 87 96 2.38 3.46 2.08 1.58 1.47 

40 87 98 4.76 5.13 3.78 2.16 2.05 

 

 
Figure.4 Graphical evaluation of the proposed and 

existing models with VMs 10 in terms of resource 

utilization 

 

 

 

 
Figure.5 Graphical evaluation of the proposed and 

existing models with VMs 10 in terms of makespan and 

transmission time 
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Table 4. Performance analysis of the proposed and 

existing models with VMs 150 in light of average waiting 

time  

Number of VMs is 150 

 

Number 

of Tasks 

Average waiting time (seconds) 

Max-Min IBPSO-LBS 

[14] 

HMMGA 

2000 7.73 28.9 6.03 

3500 21.38 44.87 18.88 

5000 43.99 59.89 38.23 

6500 69.56 76.32 56.39 

8000 108.92 91.39 88.18 

 

 
Figure.6 Graphical evaluation of the proposed and 

existing models with VMs 150 in terms of average 

waiting time 

 

Table 5. Performance analysis of the proposed and existing models with VMs 150 in light of degree of imbalance and 

makespan 

 

Number of 

Tasks 

Degree of Imbalance Makespan (seconds) 

Max-Min IBPSO-LBS 

[14] 

HMMGA Max-Min IBPSO-LBS 

[14] 

HMMGA 

2000 0.72 0.26 0.67 20.00 100 18.44 

3500 0.45 0.189 0.41 28.91 132 23.18 

5000 0.31 0.1872 0.28 43.77 167 35.09 

6500 0.26 0.185 0.23 55.66 200 49.16 

8000 0.24 0.1825 0.16 63.83 237 56.79 

 

4.2 Experiment-2 

In Tables 4 and 5, the performance of HMMGA 

is analyzed in terms of average waiting time, 

makespan and degree of imbalance. Here, the number 

of tasks ranges from 2000 to 8000 for 150 VMs. By 

inspecting table 4, the proposed model; HMMGA 

achieved better performance than the conventional 

Max-Min and IBPSO-LBS [14] algorithms in light of 

average waiting time. The parameter setting of this 

experiment is given as follows; Datacenter: host 

bandwidth (Mbps) is 100,000 host storage (MB) is 

10,000,000 the number of hosts is 3-15, policy type 

is time shared, and number of datacenter is one. 

Independent tasks: length of task is 100,000-600,000 

and total number of tasks is 2000-8000. VM: number 

of VMs is 150, number of processing elements per 

VM are 5 and the policy type is space shared. By 

investigating Table 4 and Fig. 6 it is clear that 

HMMGA showed significant performance in task 

scheduling and load balancing by minimizing 

Average waiting time related to the comparative 

algorithms. 

In Table 5, the degree of imbalance, and 

makespan is observed individually with a dissimilar 

number of tasks (2000-8000) which has 150 numbers 

of VMs. By observing Table 5, HMMGA 

significantly diminishes the makespan as the number 

of VM increases due to the increasing of processing 

power for executing the assigned tasks. From the 

analysis, HMMGA out-performs the existing 

techniques; Max-Min algorithm, and IBPSO-LBS 

[14] with minimum makespan time. In addition, 

HMMGA minimizes the degree of imbalance than 

the comparative techniques. It means that HMMGA 

delivers high load balancing level. 

4.3 Discussion 

As discussed in the experimental section, 

HMMGA is proposed in this paper for load balancing 

and task scheduling in the cloud environment. In 

most of the existing works, max-min algorithm is 

used only for balancing the load in a cloud 

environment, whereas the combination of max-min 

and a genetic algorithm is adaptable for multi-

objectives such as minimization of transmission time, 

average waiting time and makespan by considering 

the factors like load, task length and VM resources. 

The effect of HMMGA is indicated in Tables 1 to 5 

and the performance analysis is verified using the 

performance metrics like makespan, transmission 

time, resource utilization, average waiting time, and 

degree of imbalance. Under such condition, 

HMMGA averagely enhanced 10% to 40% of 

resource utilization related to the existing models; 

Max-Min, TOPSIS-PSO algorithms. In this research 

work, HMMGA achieves better performance in load 

balancing and task scheduling compared to Max-Min, 

TOPSIS-PSO and IBPSO-LBS algorithms in light of 
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makespan, transmission time, resource utilization, 

average waiting time, and degree of imbalance 

through multi-objective optimization of completion 

time through factors like load and VM resources. 

5. Conclusion 

In this research paper, several research gaps in the 

prior literature for load balancing and task scheduling 

based on heuristic and meta-heuristic algorithms are 

presented. HMMGA is implemented on the basis of 

hybrid algorithms; Max-Min and genetic algorithm 

for balancing the load in the VMs and to schedule the 

task with limited computational complexity. From 

the experimental simulation, HMMGA attained 

significant performance in task scheduling and load 

balancing in the cloud environment in light of 

makespan, transmission time, resource utilization, 

average waiting time, and degree of imbalance as 

compared to Max-Min, TOPSIS-PSO and IBPSO-

LBS algorithms. For instance, HMMGA averagely 

delivers 1.63 and 3.88 seconds less makespan related 

to the Max-Min algorithm and TOPSIS-PSO 

algorithm for five VMs. In addition, HMMGA 

enhanced 10% to 40% of resource utilization 

compared to the Max-Min, TOPSIS-PSO algorithms. 

In another experiment, the HMMGA averagely 

showed 1.7 to 25.99 seconds less average waiting 

time related to the comparative models; Max-Min 

and IBPSO-LBS. In future work, a new improved 

optimization technique can be proposed for load 

balancing and task scheduling in the cloud 

environment. 
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